Current status and applications of 3D scanning in dentistry

Mohd Javaid∗, Abid Haleem, Lalit Kumar

Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India

A R T I C L E I N F O

Keywords:
3D scanning: additive manufacturing (AM) Dentistry Application Design Dental implant

A B S T R A C T

3D scanning technologies are used to convert a physical model into digital 3D computer-aided design (CAD) file. This digital output is well used for designing and fabricating customised parts through additive manufacturing (AM) technologies. There is a need to identify the contemporary level of adoption of 3D scanning technology in the dental area. This structured literature review based research first tries to identify different types of scanning technologies and then the necessary steps as used to create a design and manufacture dental implant using the 3D scanning. A large number of the relevant research papers on 3D scanning applications in dentistry are identified through Scopus and analysed using bibliometrics. This analysis indicates towards an increasing trend of research on 3D scanning applications in the field of dentistry. Different applications of this technology are discussed in the context of dentistry and observed that this technology create innovation in dental products for a dentistry lab. The dentist can take advantages of this technology towards designing custom teeth, crown, braces, dentures, veneers and aligner. 3D digital models also support teaching in dental education for better understanding and practice of the teeth anatomy. Along with the scanning of the complete denture of the patient, direct printing of the same is done by using AM technology produces denture which directly fits the mouth of the patient. It helps reduction of the complexity and production cycle time. 3D scanning technologies seem to have the potential for denture positioning and denture retention and improvement in existing dental implants.

1. Introduction

Dental laboratories are rapidly moving towards incorporating digital format and processes including 3D scanner, CAD and different additive manufacturing technologies. The 3D scanner captures data of unique dental anatomy of patient and converts into 3D digital CAD file. This file is easily editable/printable by functional additive manufacturing technologies. It improves the level of communication between the dentist and the patient. A 3D scanned model by this technology can help the technician to advise the patient. In dentistry 3D scanner capture data by projecting light source onto the object such as teeth, dental arches and implant scan bodies.1,2

Dentist required clear and concise picture during surgery for customised treatment. 3D scanners are quicker and more comfortable which captures multiple images and further merged to form a complete digital 3D model. Apparatus of these technologies have structured illumination and represents an object in a digital 3D format. It consists of a light source and camera/s. Light is projected on the surface of the object and camera capture the data. The accuracy of the scanned object depending on the camera resolution.3,4

3D Scanners are automatic 3D acquisition devices which creates the digital 3D model from real 3D objects effectively in lesser time cost-effectively. It has high accuracy, affordable cost of product scanning, easy to use to produce a colour data. In the current scenario, 3D scanning technology is growing in many fields including those in education, medical, design which helps to create a design for the manufacturing of prototype. In design, manufacturing and inspection of parts, it plays a primary role for complex surfaces. For reverse engineering and inspection, a 3D scanner is a useful tool as it requires lesser time for capturing digitised surface data.5,6

There are many disadvantages of traditional method for measurement, such as confinement of the object of measuring to size; a regular shape and is more troublesome, laborious and time-consuming. However, three-dimensional scanning technologies can scan complex objects with excessive benefits like safety, high speed, and precision, especially time and cost saving. In the medical area, 3D scanning application is also widely used in visualisation and reconstruction of the human body parts such as orthotics, prosthetics and bones.7–10

2. Need for the study

In dentistry, customisation is necessary because the data of all
human being are not same. We need to be identifying the different scanning technologies and creation of a 3D physical dental model by adopting 3D scanning. The study shows the status of research carried out by 3D scanning and contribution of its application in dentistry. There is a need to undertake study for determining how 3D scanning helps to fulfil various requirements by using additive manufacturing technologies in lesser time with lower costs.

3. Research questions

This article addresses the following research questions:

RQ1: To study different types of scanning technologies with a brief description along with primary references.

RQ2: To identify relevant research articles on the 3D scanning applications in dentistry through Scopus and studied using bibliometric analysis.

RQ3: To identify and discuss steps used to create 3D dental implant using 3D scanning technique.

RQ4: To identify major 3D scanning applications in dentistry with a brief description along with primary references.

4. Types of scanning

Various technologies are which are being developed used to obtain data of the object, patient body, instruments or models. Table 1 discusses various technologies as used to scan models. All these scanning technologies have a different application in industries, medical and in dentistry which help to solve different problems. 3D scanning gives an accurate measurement of mouth, teeth and jaw for better understanding before surgery. Innovation is an essential requirement in every field carried out by research, and this technology is also successfully used for reconstructive surgery like dental implants.25

<table>
<thead>
<tr>
<th>S No</th>
<th>Types of Scanning</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mechanical scanning</td>
<td>Measuring arms and coordinate measuring machines (CMM) contact scanner which is also known as mechanical scanners</td>
<td>Cremer, 20011; Giffa, 200812</td>
</tr>
<tr>
<td>2</td>
<td>X-ray</td>
<td>Obtaining the information through selected points rather than the entire surface</td>
<td>Latos and Janóczki, 201111; Bogue, 201014</td>
</tr>
<tr>
<td>3</td>
<td>Optical scanning</td>
<td>Used to produce an image of soft tissue such as organs, skin that cannot absorb high-energy rays, and pass beams through them</td>
<td>Rokicki et al., 201615; Wojciechowski and Suszyński, 201717</td>
</tr>
<tr>
<td>4</td>
<td>CT scan</td>
<td>Capturing the status of dense materials like bones who absorb the radiation through the X-rays</td>
<td>Keeling-Roberts 200227; Zeng et al., 200818</td>
</tr>
<tr>
<td>5</td>
<td>Laser scanning</td>
<td>Like a camera, X-rays are also developed on X-rays films depending upon the exposure area</td>
<td>Momin et al., 201219; Hanipah et al., 201820</td>
</tr>
<tr>
<td>6</td>
<td>Ultrasound</td>
<td>Used by dentists to diagnose and for a broad variety treatment</td>
<td>Rausch et al., 200324</td>
</tr>
<tr>
<td>7</td>
<td>MRI Scan</td>
<td>Used to produce an image of soft tissue such as organs, skin that cannot absorb high-energy rays, and pass beams through them</td>
<td>Momin et al., 201219; Hanipah et al., 201820</td>
</tr>
</tbody>
</table>

5. Benefits of 3D scanning in dentistry

3D scanning has various benefits in dentistry. It efficiently designs crown, implants and bridges in lesser time and cost. Various benefits of 3D scanning in dentistry are as under:

➢ Rapid production with customised design
➢ Comfort for the patient
➢ Time and cost efficiency
➢ Reduced risk
➢ Effective planning for the procedure and simplified procedure
➢ Better communication
➢ Improved learning
➢ View dental anatomy from different angles
➢ Increased success rate of treatment

6. Research status on 3D scanning in dentistry

Scopus database is used to identify the research articles in the area of 3D Scanning application searching keywords as “3D scanning”. Here we identified 18 articles published in this area till June 2018. The first research article on 3D scanning in dentistry got published in 2006. In each year of 2007, 2008, 2009, 2010, 2011 there was only one article published, in 2013, no article was published in this field. In 2014 and 2015, two articles were published every year. In 2016, one and in 2017 five articles were published, surprisingly in 2018, no article is published up to mid-June in this area.

There is a sustained increase in articles related to 3D scanning in dentistry. Fig. 1 shows the details of the papers published by different journals on 3D scanning in dentistry; this also shows the top five journals in this area. Out of top five, Forensic Science International, Journal of Forensic Sciences and Operative Dentistry have highest publications of two. British Dental Journal and European Journal of Dentistry have one publication each. Other sources and journals also
one publication each these includes Lecture notes in electrical engineering, Quintessence international, International journal for numerical methods in biomedical engineering, International journal of legal medicine, Journal of orofacial orthopaedics, Progress in biomedical optics and imaging proceedings of SPIE, Romanian biotechnological letters and Russian open medical journal.

Fig. 2 shows the area wise research on 3D Scanning in dentistry; it observes that medical area published 24 per cent 3D scanning papers. Dentistry area contributes 17%, Biochemistry, Genetics and Molecular Biology give 14% contribution, Engineering 10%, computer science 7%, material science 7%, physics and astronomy contributes 7%. Other areas also contribute 14% in this field that includes Agricultural and Biological Sciences, Environmental Science, Immunology and Microbiology and Mathematics.

Observed from the Scopus data, analysed that there is less work done in this area but applications of 3D scanning in dentistry are increasing.

7. Steps to create 3D dental implant using a 3D scanning technique

3D digital model scanned by a 3D scanning technology provide complete and better information to the dentist and the surgeon. This 3D scanned model is easily printable by additive manufacturing
perform a verification such as temperature, humidity and lighting. It is also necessary to use 3D scanning technologies. Table 2 discusses the various steps as used to create a 3D dental implant using a 3D scanning technique.

<table>
<thead>
<tr>
<th>S No</th>
<th>Steps</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A physical model for scanning/input</td>
<td>• Developing a physical model, i.e. dentist model like teeth, jaw and associated parts
• Create a reference model, and sometimes this model is also compared with another model, obtained through other CAD processes/scanning process
• Preparing a dentist model well before the scanning</td>
<td>Hajeer et al., 2004; Logozzo et al., 2014</td>
</tr>
<tr>
<td>2</td>
<td>3D Scanning</td>
<td>• Dental model needs scanning in all directions such as front, back and sides with different sets of input parameters
• The 3D scanner creates the resulting point clouds data by assembling different scan data formats
• Mostly STL format is exported due to the universality of its use
• It involves a surface triangle mesh</td>
<td>Sakornwimon and Leevailoj, 2017; Londono et al., 2015</td>
</tr>
<tr>
<td>3</td>
<td>Export data</td>
<td>• Export raw data into several types of useful files formats, such as STEP, IGES and STL
• In this step, data can be changed, edited and modified
• Data is modified through different designing software and make changes as per requirement of the patient</td>
<td>Javaid and Haleem, 2017</td>
</tr>
<tr>
<td>4</td>
<td>Edit data</td>
<td>• After modification in the data, a 3D solid object is fabricated from the 3D digital file by addition of materials layer by layer
• It is a reliable method for reconstruction of precise dentist model with cost-effectiveness as compared to other traditional techniques</td>
<td>Javaid et al., 2015; Kumar et al., 2015; Haleem et al., 2016</td>
</tr>
<tr>
<td>5</td>
<td>3D printing</td>
<td>• It is necessary to go for post-processing of printed model due to low strength and surface finish
• Inspection is also an essential step before actual implementation
• Model printed by a 3D printing technology must be as per required quality and strength under a specific condition</td>
<td>Lee et al., 2014; Kumar et al., 2016</td>
</tr>
<tr>
<td>6</td>
<td>Post-processing and inspection</td>
<td>• It involves a surface triangle mesh
• Inspection is also an essential step before actual implementation
• Model printed by a 3D printing technology must be as per required quality and strength under a specific condition</td>
<td>Lee et al., 2014; Kumar et al., 2016</td>
</tr>
</tbody>
</table>

During scanning, some parameters are necessary to be kept stable such as temperature, humidity and lighting. It is also necessary to perform a verification/calibration of 3D scanner before measurement, or group of analysis.

8. Major applications of 3D scanning in dentistry

Dentist healthcare professional requires a digital replica of patient mouth for various reasons. Now 3D scanners are available to create digital dentistry. It is an automated process which takes the scan of whole patient mouth in few minutes. In dentistry, 3D scanning is an essential tool because plaster model of the patient’s mouth or teeth has to be built quickly and use this model for treatment planning, diagnosis and appliance construction. By using 3D scanning technique, it re-creates a possible best fit model of the teeth, silicone maxillofacial prosthesis and ceramic crowns. It gave better accuracy and used in various applications in dentistry. (Please see Table 3).

3D scanning application helps dentist and surgeon to design and develop any implant and dental devices. In dentistry, it improves patient outcomes and used for preoperative planning, education, custom designing and make reliable operation. It provides a better understanding of surgeon and patient.

9. Discussion

3D scanning is an innovative technique towards customised designing of dental implants and other dental tools using different types of software. It efficiently designs/redesign any dental crowns, bridges, orthodontic braces and other devices and instruments as per patient requirement. The principle of a 3D scanning device is similar to that of a camera; here in this process, multiple images are combined to form a digital 3D model. This technology plays an essential role in research and development of dentistry implants and tools. Up-gradation in any dentistry model, tools and equipment are promising as per requirement of the dentist. It is quick scanning, and subsequent CAD modelling, compatibility to software analysis and integration to printing machine is wonderful which improves patient outcomes and overall reliability of the process. 3D scanning technologies easily help to recreate teeth of patients, jaws and other dental devices exact like an original. A surgeon can update tools and implants any time in the digital file. It reduces operation time and provides better planning before surgery for the complicated procedure. It gives an efficient design for all oral health items as per human mouth shape and size. 3D scanned model used to train medical student by better demonstrate internal and external anatomy.

10. Future scope

This technology is already used in various fields of engineering, medicine and dentistry to produce accurate product/medical model. It can design highly accurate 3D digital model of patient teeth as well as mouth which is very much helpful for treatment planning. In future, it will create development in digital dentistry and become more common in this field. This technology gives an accurate result and is patient-friendly as compared to other scanning technologies. It is used effectively for clinical research and clinic-pathological correlation which can well couple with holographic and virtual technology. It improves communication between patient and dentist. It helps to solve primary requirements of complexity and customisation because patient data is differing from one another. Researcher and dentist will apply this technology to study patient’s anatomy, reverse engineering and research purpose. This non-contact technology measures human structure and provides the best training for medical education. In future, it will become an excellent approach that captures accurate data of the physical model, and additive manufacturing technologies easily print this data in less time and cost.

11. Conclusion

3D scanning has extensive application in dentistry in which designing of personalised dentistry models, drill guides for dental implants are possible. It has vast application areas such as industries, defense, aerospace, art, medical to enhance the customisation and rapid production. Nowadays, it has various applications in the field of dentistry in daily life. The research is continuously increasing which brings a new revolution in dentistry. It has great potential to design and develop tools for dentist and surgeons. In upcoming years this technology will bring a more dental product for a dentistry lab. The dentist can take advantages of this technology for design and help for the replacement of teeth, crown, braces, dentures, veneers and aligner. It gives a better
understanding of complex pathology and anatomy of patients and is suitable for surgical training. The dentist can convert a new idea into a reality and save much time. By using this technology, there will be an improvement in the quality of life of the patient, and it will efficiently solve the problem in dentistry.

References

M. Javaid et al.
Clinical Epidemiology and Global Health 7 (2019) 228–233

26. Hajeer MY, Millet DT, Ayoub AF, Siebert JP. Applications of 3D imaging in ortho-

27. Logozzo S, Zanetti EM, Franceschini G, Kilpela A, Mäkynen A. Recent advances in
2014;54:203–221.

28. Sakornwimon N, Leevailoj C. Clinical marginal fit of zirconia crowns and patients’
preferences for impression techniques using intraoral digital scanner versus polysil-

29. Londono J, Abreu A, Baker PS, Furness AR. Fabrication of a definitive obturator from
a 3D cast with a chairside digital scanner for a patient with severe gag reflex: a clinical

30. Asquith JA, McIntyre GT. Dental arch relationships on three-dimensional digital
study models and conventional plaster study models for patients with unilateral cleft

31. Del Corso M, Aba G, Varquez L, Darquard J, Dohan Ehrenfest DM. Optical three
dimensional scanning acquisition of the position of osseointegrated implants: an in
vitro study to determine method accuracy and operational feasibility. Clin Implant

32. Javaid M, Kumar L, Kumar V, Haleem A. Product design and development using

33. Kumar L, Haleem A, Tanveer Q, Javaid M, Shaheeb M, Kumar V. Rapid manufacturing:

34. Haleem A, Khan A, Javaid M. Design and development of smart landline using 3D

35. Lee JH. Accelerated techniques for a post and core and a crown restoration with
intraoral digital scanners and CAD/CAM and rapid prototyping. J Prosthodont.
2014;112(5):1024–1029.

37. Andriessen FS, Rijksen DR, van der Meer WJ, Wissemijer DW. Applicability and ac-
curacy of an intraoral scanner for scanning multiple implants in edentulous mand-

38. Benic GI, Elmasry M, Hammerle CH. Novel digital imaging techniques to assess the

40. Wissemijer D, Mares R, van Genuchten M, Reijers HA. Patients’ preferences when
comparing analogue implant impressions using a polyether impression material versus

41. Lin WS, Harris BT, Morton D. The use of a scanable impression coping and digital
impression technique to fabricate a customized anatomic abutment and zirconia

42. Logozzo S, Franceschini G, Kilpela A, Caponi M, Govere L, Blois L. A comparative
analysis of intraoral 3d digital scanners for restorative dentists. Internet J Med

43. Lowe RA. CAD/CAM dentistry and chairside digital impression making. Dent Econ.
2009;204:505–511.

44. Singh RP, Katanya R, Singhal S. Performance evaluation of macor dental ceramic: an

45. Lin WS, Chou JC, Metz MJ, Harris BT, Morton D. Use of intraoral digital scanning for
a CAD/CAM-fabricated milled bar and superstructure framework for an implant-

46. Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM:
current status and future perspectives from 20 years of experience. Dent Mater.

47. Choi HS, Kim SH. The application of CAD/CAM in dentistry. J Kor Dent Assoc.

crowns exclusively fabricated by digital workflow—the comparison of two systems.

49. Nedeau RG, Persson AS. Scanning accuracy and precision in 4 intraoral scanners: an

2014;111:1717–1755.

52. Lee SJ, McArthur RX, Gallucci GO. An evaluation of student and clinician perception

53. Haleem A, Javaid M. 3D scanning applications in medical field: a literature-based
cegh.2018.05.006.

55. Cuperus AM, Harms MC, Range FA, et al. Dental models made with an intraoral

56. Naidi D, Freer TJ. Validity, reliability, and reproducibility of the IOC intraoral
scanner: a comparison of tooth widths and Bolton ratios. Am J Orthod Dentofacial

57. Lee H, Ercoli C, Funkenbusch PD, Feng C. Effect of subgingival depth of implant
placement on the dimensional accuracy of the implant impression: an in vitro study.

58. Abdel-Azim T, Rogers K, Elathamia E, Zandinejad A, Metz M, Morton D. Comparison
of the marginal fit of lithium disilicate crowns fabricated with CAD/CAM technology
by using conventional impressions and two intraoral digital scanners. J Prosthodont.

59. Javaid M, Haleem A. Current status and challenges of Additive manufacturing in
1016/j.jcot.2018.05.008.

60. Ash JW, Park JM, Chun YS, Kim MA, Kim MJ. A comparison on the precision of
three-dimensional images acquired by two different digital intraoral scanners: effects

61. Mangano F, Gandolfi A, Luongo G, Logozzo S. Intraoral scanners in dentistry: a re-

63. Kumar L, Shaheeb M, Tanveer Q, Kumar V, Javaid M, Haleem A. 3D scanner inte-

64. Marti AM, Harris BT, Metz MJ, et al. Comparison of digital scanning and polysil-
vonile silicone impression techniques by dental students: instructional efficiency and